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Recap: Model Comparison

As you have learnt in previous lectures, Bayes
theorem provides us with a quantitative 
method of selecting between competing 
hypotheses
In order to answer this question we need to 
calculate the following (‘odds’) ratio of 
probabilities:

Evidence Prior
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Recap: Model Comparison 

where d are the data, θ are the model 
parameters and M is the model hypothesis we 
wish to test
In practice calculation of the marginal 
likelihood or “Evidence” E typically requires 
numerical integration

Likelihood Prior
L π
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Recap: Model Comparison 

Often the numerical integration is 
implemented using some form of Monte Carlo 
or ‘random sampling’ integration 

For complex, multi-dimensional problems how 
do we find and sample the interesting regions 
of high likelihood value in the prior volume 
and so obtain an accurate estimate of the 
evidence for a given hypothesis?
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Recap: MCMC methods

Specific forms of Monte Carlo integration 
include Metropolis-Hastings and Simulated 
Annealing
In these cases a chain of points converges to 
sampling the joint posterior distribution
However these techniques primarily focus on 
parameter estimation, and neglect efficient 
model comparison
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Introducing Nested Sampling

The key premise of the nested sampling 
algorithm is to provide an efficient and robust
numerical means of calculating the marginal 
likelihood for model comparison

Parameter estimation is a useful by-product of 
the algorithm

Nested sampling is statistical and therefore of 
the Monte Carlo class of algorithms
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Basics of the algorithm
Initialization:

•N uniform random 
samples (‘active sample’) 
are drawn from the prior 
parameter space

• These active samples are 
re-ordered in ascending 
likelihood
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Basics of the algorithm
Iterative step:

•We remove the active sample 
with the lowest likelihood from 
the active sample and store it in 
the chain

• A new sample from the prior is 
added to the group, subject to 
the hard constraint that its 
likelihood is greater than the 
recently removed sample

• Continue this process iteratively



Nested Sampling9th September 2016 James Allison

Basics of the algorithm

Image Credit: David Mackay (http://www.inference.phy.cam.ac.uk/bayesys/box/nested.pdf)

Each successive iteration defines an outer likelihood contour 
nested within the previous one, hence “Nested Sampling”
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Basics of the algorithm

The removed points define a chain of 
increasing likelihood samples in X, where X is 
the fraction of the prior that contains 
likelihood larger than the sample

The marginal likelihood can then be calculated 
by integrating the likelihood over X
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Basics of the algorithm

The integral can be approximated by a sum m
samples of Li, separated by widths wi in X
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Basics of the algorithm

We can approximate the widths wi using one 
of the following rules:

Trapezoidal Rule

Rectangle Rule

Simpson’s Rule etc…
Error = 

Error = 
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Estimating the integral

The chain of rejected points define our Li but 
what about the corresponding Xi required to 
calculate our widths?

The problem is for a general likelihood 
distribution we can’t easily calculate the 
fraction of the prior volume Xi
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Estimating the integral

However it turns out that we can estimate X
statistically

At each iteration the prior volume Xi occupied by 
the active samples shrinks by a value that has a well 
defined mean and variance 

The uncertainty in this statistical estimate of Xi
becomes less for large values of active samples N
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Estimating the integral

X at each iteration is related to its previous 
value by a geometric sequence defined by the 
“shrinkage” factor t:



Nested Sampling9th September 2016 James Allison

Estimating the integral

We can use this behaviour to derive a statistical 
estimate of the amount by which the prior 
volume shrinks at each iteration

• x1,x2 … xn (the positions of our active samples) 
are n independent uniform random variables 
between 0 and 1

• The probability Pr(xi < x) = x
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Estimating the integral

• t is the prior volume contained by the active 
sample with lowest likelihood, selected to be added 
to the chain. So t = max{x1,x2 … xn}

• t < x if and only if xi < x for all i

Pr(t < x) = Pr(x1 < x)*Pr(x2 < x)*…*Pr(xn < x) = xn

• The probability distribution of t values for a given 
iteration is equal to the differential of this 
cumulative probability
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Estimating the integral

At each iteration, the amount by which the 
prior volume contained by the active samples 
shrinks is therefore distributed with 
probability

And the geometric mean (since we often 
operate in log space) and STD is given by
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Estimating the integral

So at the ith iteration we can estimate the 
value of Xi based on the product of expected 
values of t (setting X0 = 1): 

We have estimates of 
our widths 
now for the integral of
the likelihood!
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Estimating the integral

• We now have everything we need to estimate the 
marginal likelihood

1

2

3
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Working in logarithmic space

In practice we sample the logarithm of the likelihood, rather 
than the absolute value of the likelihood itself 
Reasons for this include:
- Avoids very large and small numbers (which often occurs for 
many physical applications)
- In the case of nested sampling the sequence is geometric, 
and so the sampling is naturally in logarithmic space
- Uncertainties are symmetric in logarithmic space

So instead we estimate log(E) by calculating the logarithm of 
the sum of Liwi
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Choosing the replacement active sample

The hardest problem in Nested Sampling is sensibly 
choosing the replacement active point
Conditions are:
•New active point must be drawn from the prior
• New likelihood must be greater than Li

Problem:  As Xi tends to 0 
the acceptance rate decreases 
steadily, reducing the efficiency 
of the algorithm
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Choosing the replacement active sample

Solution:
Use Markov-Chain Monte Carlo to choose the 

new active point

1) Choose a surviving active point at random

- This ensures that the likelihood is sensible

- However we now need to loose knowledge of 

this point, otherwise we bias the sampling

2) Evolve this point by taking a small step in the 

prior (e.g. 0.1)
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Choosing the replacement active sample

3) Accept this trial point subject to the constraint L >
Li else reject

4) If number of acceptances greater than number of 
rejections then increase step size, else decrease
- This ensures that information is lost about the 
starting point and that the acceptance rate converges

5) Continue for approximately 20 or more steps



Nested Sampling9th September 2016 James Allison

The termination condition

We can now estimate the marginal likelihood E for a 
large number of N active samples over m iterations

But how do we know 
when to stop? What is 
a good value of m?
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The termination condition

At each iteration the largest possible contribution to the 
integral E from the remaining portion of the enclosed 
prior volume is given by:

Lmax is the largest likelihood value found in the current 
sample of the N active samples

The iterations are stopped when the above maximum 
change in E is less than the required tolerance e.g. 0.1 in 
log(Ei)



Nested Sampling9th September 2016 James Allison

Uncertainty in the marginal likelihood

The power of Nested Sampling lies in being a 
simple method for estimating the marginal 
likelihood for model comparison

Unlike most MCMC methods, which require 
multiple chains, Nested Sampling can 
estimate the uncertainty in the marginal 
likelihood from just a single run
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Uncertainty in the marginal likelihood

Contributions to the uncertainty in the marginal 
likelihood are:
• The discretization of the integral due to the width 
e.g. rectangle rule                 or trapezoidal rule                

• The cumulative uncertainty in the statistically 
estimated value of X at each iteration 

For an adequate number of iterations m the first 
error will be negligible and the second error 
dominates
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Uncertainty in the marginal likelihood

The uncertainty in E is dominated by iterations that 
contribute the bulk of the likelihood 
This region in prior has size approximately equal to

where the quantity H is a measure of the 
“information” gained from including the data, over 
that from the prior, and is given by 
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Recapping, the expected value and standard 
deviation in log Xi is given by 

If most of the contribution to E comes from the 
region 

Then the error in the estimate of the log(X) 
contributing most to E is

Uncertainty in the marginal likelihood

So
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The model parameters

What about parameter estimation?

The resulting chain of rejected samples also provides 
an estimate of the posterior probability for the 
model parameters

Mean

Standard Deviation
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Application to a science problem

Example: Detection of a spectral line in a low signal-to-noise spectrum

Likelihood function:

Hypothesis 1: No spectral line 
(null)

Hypothesis 2: Gaussian model 
of spectral line

Data
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Application to a science problem
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Application to a science problem

Log(E) = 8.43 +/- 0.10

Pr(Line) = 99.98%
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Further Reading

• “Data Analysis: A Bayesian Tutorial”, 2nd Edition, D. S. Sivia & J. Skilling

• http://www.inference.phy.cam.ac.uk/bayesys/nest.pdf

• “Multimodal nested sampling: an efficient and robust alternative to 
Markov Chain Monte Carlo methods for astronomical data analyses”, F. 
Feroz & M. P. Hobson (2008), MNRAS

Python module to run multi-modal Nested sampling

• http://johannesbuchner.github.io/PyMultiNest/
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Extra slides
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Recap: The procedure

Steps: 
1) Identify the prior and likelihood function for the problem
2) Initialize X0 = 1 and E = 0
3) Take N random points (“active points”) sampled from the prior 

distribution
4) Re-order the N samples by their likelihood values
5) Select the lowest likelihood sample point Li

6) Set Xi = exp(-i/N) and wi = (Xi-1 – Xi+1)/2 
7) Increment E by Liwi

8) Check maximum change in E for termination condition (true = go to 11)
9) Replace with a new sample drawn from prior and condition L > Li

10) Start again from 5
11) Increment E by final contribution from central prior region  


